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Abstract— Computer vision techniques have been widely used in automating the surface defect inspection process 
where the goal is to detect and identify defects. Surface defect is defined as global color deviation or local textural 
irregularity which has the main concern in the inspection process. In this paper, the proposed automated system 
identifies different surface defects using Support Vector Machine (SVM) classifier according to surface textural 
features. The proposed system introduces a novel feature description technique that extracts local and global 
features of surfaces. This technique combines Local Binary Pattern (LBP) features with the global textural features 
of Gray-level Co-occurrence Matrix (GLCM) to address different surface defects. The proposed system has been 
tested on wood and ceramic tiles images. Experimental results successfully demonstrated the efficiency of the 
feature description technique and the overall surface defect inspection system. 
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I. INTRODUCTION 

Automated Surface Inspection (ASI) has been widely adopted in the industry sector in the last 
two decades to detect defect regions on surfaces or to identify the defect type and its existence 
on the surface. Surface defect is defined as local textural irregularities; or global deviation of 
color which is known as a shade or tonality problem [1]. Automated Surface Inspection (ASI) 
of wood, steel, textile and ceramic tiles is an alternate of human visual inspection, where a 
real-time feedback is required when a certain defect occurs because of labor costs and human 
distraction that affect the decision. 
Detection of textural defects is the main concern of researchers. These defects can be 
categorized into different types and names according to the shape of textural irregularity and 
the surface material. Spot regions such as wood knots, ceramic tiles blobs and lengthwise 
breakage or separation, wood checks and ceramic tiles cracks are the most common defects of 
surfaces [2], [3]. Fig. 1 shows different types of defects on wood and ceramic tiles surfaces. 
In this paper, an automated system is proposed to recognize different surface defects using 
Support Vector Machine (SVM) classifier according to surface textural features. It has the 
ability to recognize wood checks and knots, as well as ceramic tiles cracks and blobs. The 
proposed system introduces a feature description technique that extracts local and global 
features of surfaces. This technique combines Local Binary Pattern features with the global 
textural features of Gray-level Co-occurrence Matrix to address different types of surface 
defects. The proposed system can be deployed in the industrial sector instead of the human 
surface inspection for labor cost and the distraction which could affect the human decision.  
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Fig. 1. Examples of surface defects: a) wood check, b) wood knot, c) ceramic tile crack, d) ceramic tile blob 

II. PREVIOUS WORKS 

There are numerous reported works in the past two decades during which computer vision 
based surface inspection has become one of the most important application areas. The feature 
extraction techniques used to inspect surface textural irregularities have the main influence on 
the overall accuracy of the defect detection and identification. These techniques can be 
categorized into: statistical approaches, structural approaches, and filter-based approaches [1]-
[19]. 
Statistical approaches, which rely on measuring the spatial distribution of pixel, have been 
used to extract surface features in the inspection process. These approaches are based on: 
histogram properties, co-occurrence matrix, and local binary pattern. In [2], a flaw detection 
technique and defect classification algorithm based on pixels intensity and contrast have been 
applied on flat and textured ceramic tiles to identify several defects. This technique has more 
computations and less efficiency. In [6], the textural features extracted from the co-occurrence 
matrix have been used to detect surface defects. Co-occurrence matrix features have been 
used also to detect defects on textile and thin-film transistor (TFT) array surfaces [13], [14]. 
The efficiency of co-occurrence matrix technique is small. A local binary pattern has been 
deployed in many works to detect surface, wood, and pavement defects [8]-[11]. Only local 
textural irregularities have been detected. 
Structural approaches, which are based on edge features and morphological operation, have 
been used by many researchers. In [5], a set of morphological techniques along with intensity 
adjustment, histogram equalization and noise reduction techniques has been deployed on tiles 
to detect several defects. Blob measurements such as size, perimeter, and spatial distribution 
have been used with k-means clustering in [16], [18]. In [17], morphological operations have 
been used to detect fabric defects. These morphological techniques are time consuming. 
Filter-based approaches, which are based on spatial and frequency-domain filters, have been 
used in many works for surface inspection. In [4], combined texture features have been 
extracted from ceramic tile images before deploying back propagation neural network to 
detect existing defects. The combined features used are based on undecimated discrete 
wavelet transform and co-occurrence matrix. In [7], [12], a defect detection algorithm using 
Gabor wavelet and Gaussian filter has been proposed. In [19], a vision-based inspection 
system was proposed to identify seven defects on metal surfaces. The proposed system used a 
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two-level DWT decomposition and Fourier spectral to compute texture. These techniques are 
suitable for low level intensity defects. 

III. MATHEMATICAL BACKGROUND 

A) Gray Level Co-occurrence Matrix (GLCM) 
 
The gray level co-occurrence matrix (GLCM), as proposed in [20], was used to calculate the 
features of various defects, which can serve as basis for defect recognition. GLCM of an 
image is defined as the distribution of co-occurring gray levels at a given offset: direction (θ) 
and distance (d). The relative frequencies of two neighboring pixels, one with gray level i and 
the other with gray level j, are calculated from the scaled image to construct the co-occurrence 
matrix Pij. This co-occurrence matrix (Pij) can be calculated with different values of d such as: 
1, 2, and 3; and different values of θ such as: 0, 45, 90, and 135 as shown in Fig. 2. 

 

θ = 0

θ = 45θ = 90θ = 135

d = 1
d = 2

d = 3
 

Fig. 2. GLCM with different offsets. 
 

A variety of textural features can be extracted from the co-occurrence matrix Pij such as: 
Energy, Contrast, Correlation, Homogeneity, Entropy, Autocorrelation, Dissimilarity, and 
Cluster Shade [22]. These features can be used as a descriptor of the original image. The 
following equations define a set of these features given that: p(i,j) is the (i,j)th element in the 
co-occurrence matrix; µx and µy are the mean values for both the rows and columns of the 
matrix; σx and σy are the standard deviation values for both the rows and columns of the 
matrix; and Ng is the number of gray levels in the scaled image [20]-[22]: 

µx = ∑ ∑ i. p(i, j)j  i                                                                                                                (1) 

µy = ∑ ∑ j. p(i, j)ji                                                                                                                 (2) 

σx = ∑ ∑ (i − µx)2. p(i, j)ji                                                                                                    (3) 

σy = ∑ ∑ �i − µy�
2. p(i, j) ji                                                                                                   (4) 

The textural features are defined as shown in (5)-(12) [20]-[22]: 
1) Energy 

𝑓1 = ∑ ∑ p(i, j)2ji                                                                                                                   (5) 

2) Contrast 
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𝑓2 = ∑ n2 �∑ ∑ p(i, j)Ng
j=1

|i−j|=n

Ng
i=1 � Ng−1

n=0                                                                                  (6) 

3) Correlation 
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4) Homogeneity 

𝑓4 = ∑ ∑ 1
1+(i−j)2ji   p(i, j)                                                                                                      (8) 

5) Entropy 

𝑓5 = −∑ ∑ p(i, j) log�p(i, j)�ji                                                                                              (9) 

6) Autocorrelation 

𝑓6 = ∑ ∑ (ij). p(i, j)ji                                                                                                            (10) 

7) Dissimilarity 

𝑓7 = ∑ ∑ |i − j|. p(i, j) ji                                                                                                       (11) 

8) Cluster Shade 

𝑓8 = ∑ ∑ �i + j − µx − µy�
3. p(i, j)ji                                                                                    (12) 

 
B) Local Binary Pattern (LBP) 

 
Local Binary Pattern (LBP), as proposed in [23], [24], is a gray-scale and rotation-invariant 
operator used to extract local texture features of an image. In order to compute the LBP for a 
given pixel position (xc, yc), a comparison is made between the pixel value and its 
surrounding pixel intensities. If the value of the surrounding pixel is greater than the center 
pixel value, the surrounding pixel is marked as 1; otherwise, it is marked as 0. The number of 
surrounding pixels can be 4, 8, 12, 16, or 24 as shown in Fig. 3. Using eight surrounding 
pixels would yield an 8-bit binary code, which is assigned as the new pixel value of the 
centered pixel as shown in Fig. 4. 

 

P = 4 P = 8 P = 12 P = 16 P = 24  
Fig. 3. Circularly symmetric surrounding sets for LBP 

 
The formula of LBP can be expressed as: 

𝐿𝐿𝐿𝑃(𝑋𝑐, 𝑌𝑐) = ∑ 𝑆�𝑔𝑝 − 𝑔𝑐�𝑃−1
𝑝=0 2𝑝                                                                                  (13) 
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Where ɡc corresponds to the gray value of the centered pixel; ɡp corresponds to the gray value 
of neighboring pixels; P is the number of surrounding pixels; and S is a function defined as: 

S(x) = �0, x < 0                       
1, x ≥ 0                                                                                            (14) 

The LBPp operator produces 2P different local binary patterns. To make local binary patterns 
invariant to rotation, a new definition of LBP is represented: 

LBPPri = min�ROR�LBPp, i�  �   i = 0, 1, … . . , P − 1�                                                         (15) 

where ROR(x,i) performs a circular bit-wise right shift on the P-bit number i times; and it thus 
achieves 36 unique rotation invariant local binary patterns in case of LBPP. These local binary 
patterns describe bright spots, dark spots, and edges as mentioned in [8]. 
An improved edition of LBP is introduced in [23] which adopts a uniformity measure (U) 
defined as the number of spatial transitions (bitwise 0/1 changes) in the local binary pattern. 
For example, pattern 111111112 has U value of 0, whereas pattern 000111112 has U value of 
2. This uniformity measure categorizes local binary patterns to ‘uniform’ patterns (which are 
fundamental properties of texture and have U value of at most 2) and ‘nonuniform’ patterns. 
The formula of LBP would be expressed as: 

LBPPriu2 = �∑ S�gp − gc�              if U(LBPP) ≤ 2P−1
p=0
P + 1                                    otherwise

                                                        (16) 
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Fig. 4. Schematic of LBP with eight pixel surroundings 

 
This definition would produce P+1 uniform patterns and 1 nonuniform pattern. The 
nonuniform pattern collects all patterns that have U > 2. The number of LBP patterns has 
been reduced to P+2 patterns. 
The histogram of LBP patterns accumulated over a surface image is used as the feature 
descriptor of a surface texture. In [23], researchers concluded that the histogram of the 
uniform patterns has better discrimination results in comparison with histograms of other LBP 
patterns. 
 

C) Support Vector Machine (SVM) 
 
Support vector machine (SVM) is a linear classifier that deploys statistical learning theory 
and kernel function for classification. SVM with a sigmoid kernel function is similar to a two-
layer feed forward neural network response. SVM is more efficient than the neural network in 
solving complex problems with a large data set and high dimensionality to avoid overfitting 
[25]-[27]. The concept of SVM suggests the optimal hyperplane that maximizes the margin 
between the hyperplane itself and the closest vectors belonging to both classes. Fig. 5 shows 
an optimal hyperplane that separates the classes with a maximum margin [27]-[29]. 
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In a case, input space is: {x1, x2, x3, … … . . , xn} ; and output space is: y ∈  {−1,1} . The 
hyperplane separating the two classes can be represented by [27]-[29]: 

w.����⃗ x�⃗ + b = 0                                                                                                                           (17) 

where w (weight) is the orthogonal vector to the hyperplane determining its orientation; and b 
(bias) is the distance from the origin to the hyperplane. 
Any training sample should satisfy: 

w���⃗ . x�⃗ + b ≥ 1 for y = +1                                                                                                       (18) 

w���⃗ . x�⃗ + b ≤ −1 for y = −1                                                                                                   (19) 

These two inequalities can be combined to get: 

y(w���⃗ . x�⃗ + b) − 1 ≥ 0                                                                                                                (20) 

The formulation of this problem would be: 

maximize    2
‖w‖

    or minimize 1
2
‖w‖2                                                                              (21) 

Such that: y(w���⃗ . x�⃗ + b) − 1 ≥ 0 
To solve this optimization problem, a Lagrange multiplier is suggested; and the problem 
becomes: 

minimize Lp ≡
1
2
‖w���⃗ ‖2 − ∑ αiyil

i=1 (w���⃗  . xı���⃗ + b) + ∑ αi       l
i=1                                          (22) 

Such that αi ≥ 0 where α is the Lagrange multiplier. 
The result of solving SVM with Lagrange is a decision function in terms of Lagrange 
multipliers α and bias (b) for test input xt: 

yt = ∑ αiyi < xı���⃗ . xt���⃗ > +b                                   l
i=1                                                                        (23) 

If data is not linearly separable, Slack variables ξi can be added to allow mis-classification of 
difficult or noisy data points. The formulation would be: 

              minimize 1
2
‖w‖2 + C∑ ξi                                          n

i=1                                                  (24) 

where C is a cost function with                                    and  
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Fig. 5. SVM optimal hyperplane example 
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IV. SURFACE DEFECT INSPECTION SYSTEM 

The surface inspection system, as shown in Fig. 6, consists of two stages:  
• Feature Description: in which a feature descriptor of surface images is constructed by 

combining the histogram of a local binary pattern image and the textural features 
extracted from the gray level co-occurrence matrix. 

• Classification Model Construction: in which a linear support vector machine classifier is 
trained on the previous feature descriptors of images with defect-free and defective 
surfaces. 

 

Feature 
Description

SVM 
Training

Stored 
Model

Classification Model 
Construction

Surface 
Images

 
Fig. 6. Diagram of the surface inspection system 

 
A) Feature Description 

 
This stage consists of two modules as shown in Fig. 7: Local Binary Pattern (LBP) module 
and Gray-level Co-occurrence Matrix (GLCM) module. The input of each module is a gray 
scale surface image, while the output of each module is a feature descriptor of the surface 
image. Both feature descriptors extracted from the two modules are combined and 
concatenated to construct one feature descriptor that describes shape and pattern details of the 
surface image. This combining process has been fulfilled to achieve the local features from 
LBP and global features from GLCM which yield an efficient descriptor of surface images. 
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Fig. 7. Feature description 

 
A.1. LBP Feature Description Module 

This module generates a feature vector by applying the LBP operator on the surface image. A 
rotation-invariant LBP with eight pixel surroundings has been deployed on each surface 
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image to generate a LBP image which describes bright spots, dark spots, and edges.  The 
formula of LBP with eight surroundings can be expressed as: 

LBP8(Xc, Yc) = ∑ S�gp − gc�7
p=0 28                                                                                           (25) 

Where ɡc corresponds to the gray value of the centered pixel; ɡp corresponds to the gray value 
of neighboring pixels; and S is a function defined as: 

S(x) = �0, x < 0                                                                              
1, x ≥ 0                                            (26) 

With rotation-invariance operator, the previous formula becomes: 

LBP8ri = min{ROR(LBP8, i)  |   i = 0, 1, … . . , 7}                                                                   (27) 

where ROR(x,i) performs a circular bit-wise right shift on the 8-bit number i times. It thus 
achieves 36 unique rotation invariant LBP patterns instead of the original 256 LBP patterns. 
Applying the uniformity measure (U), LBP patterns would be categorized into ‘Uniform’ 
patterns and ‘Non-uniform’ ones. The formula of LBP with a uniformity measure would be 
expressed as: 

LBP8riu2 = �∑ S�gp − gc�              if U(LBP8) ≤ 27
p=0

9                                    otherwise
                                                          (28) 

This definition would produce nine uniform patterns and one Non-uniform pattern as shown 
in Fig. 8. The final step in this stage is to compute the histogram of LBP uniform patterns. 
This histogram would have ten bins including nine uniform patterns and one pin for all other 
Non-uniform patterns.  

 

(a)

(b)

U0 U1 U2 U3 U4

U5 U6 U7 U8

NU NU NU NU NU

 
Fig. 8. Examples of LBP8 patterns: a) the nine uniform patterns. b) examples of non-uniform patterns 

 
A.2. GLCM Feature Description Module 

This module generates a feature vector by computing the GLCM on the surface image. The 
surface image is initially scaled to eight gray levels, before the co-occurrence matrix Pij is 
computed with direction (θ = 0o) and distance (d = 1). Eight textural features are extracted 
from the co-occurrence matrix Pij. These eight features are: Energy (f1), Contrast (f2), 
Correlation (f3), Homogeneity (f4), Entropy (f5), Autocorrelation (f6), Dissimilarity (f7), and 
Cluster Shade (f8). Finally, a feature vector of GLCM is constructed from such features as: 
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Feature Vector of GLCM=[f1, f2, f3, f4, f5, f6, f7, f8] 

Finally in this stage, a feature descriptor of length 18 is constructed by combining the ten 
histogram pins of LBPs (nine uniform LBPs and one non-uniform LBP) and the eight textural 
features of GLCM. The format of the feature vector would be: 

Feature Descriptor=[U0, U1, U2, U3, U4, U5, U6, U7, U8, NU, f1, f2, f3, f4, f5, f6, f7, f8] 

 
B) Classification Model Construction 

 
This stage constructs two classification models for each surface based on the feature 
descriptors produced in the previous stage. Linear SVM is trained on defect-free and defective 
surface images, after producing their feature descriptors, to build up a ternary-class 
classification model as shown in Fig. 9. The output of this stage is two classification models: 
one for ceramic tiles classification, and the other for wood classification. Each model is 
trained in a one-versus-other fashion to generate a ternary-class structure representing the 
state of the surface which is either defect-free or with two different types of defects. 

 
Wood Training 
Dataset Features

Defect-free SVM

SVM

Knot Defect

Non-
Sign

(a) (b)

Check Defect

Ceramic Tiles Training 
Dataset Features

Defect-free SVM

 Crack Defect SVM

Blob or Pinhole 
Defect

 
Fig. 9. Classification model construction: a) wood surfaces model, b) ceramic tiles surfaces model 

 
Each model is constructed by training it twice. The optimal hyperplane in each time 
maximizes the margin between the hyperplane itself and the closest vectors belonging to both 
classes.  
In a case, feature descriptors of the trained images dataset are: {x1, x2, x3, … … . . , xn}; and 
output label is: y ∈  {−1,1}. 
The hyperplane separating the two classes can be represented by: 

w.����⃗ x�⃗ + b = 0                                                                                                                                   (29) 

where w (weight) is the orthogonal vector to the hyperplane determining its orientation; and b 
(bias) is the distance from the origin to the hyperplane. 
To solve this optimization problem, a Lagrange multiplier (α) is suggested. The result of 
solving SVM with Lagrange is a decision function in terms of Lagrange multipliers and bias 
(b) for test input xt as follows: 

yt = ∑ αiyi < xı���⃗ . xt���⃗ > +b                                                                       l
i=1                                (30) 
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V. EXPERIMENTAL RESULTS 

The proposed surface defect inspection system has been validated on wood and ceramic tiles 
images. These surface images have been captured using SAMSUNG ST65 camera and scaled 
to 320 x 240 pixels by a numeric fraction to overcome the impact of objects’ distortion. The 
proposed surface defect inspection system has been implemented in MATLAB software 
running on 2.4-GHz i3 CPU. 
A dataset of 414 surface images has been collected to be used in both the training and testing 
phases. This dataset includes ceramic tiles and wood images. In addition, it has defect-free 
and defective surface images. Table 1 shows the exact division of dataset images. These 
dataset images have been categorized by a human expert to: defect-free, crack defect, and 
blob or pinhole defect for ceramic tiles; and to: defect-free, check defect, and knot defect for 
wood surfaces. Crack, Pinhole, and Blob defects of 35 ceramic tiles were enforced by manual 
manipulation of surface images to compensate for the lack of enough number of raw images 
that satisfy these defects. 

TABLE 1 
SURFACE IMAGES DATASET DIVISION 

                                  Surface 
Defect Ceramic Tiles Wood 

Blob or Pinhole/Knot Defects 42 58 

Crack/Check Defects 32 34 

Defect-free 124 124 

Total Surface Images 198 216 

Total Dataset Images 414 

 
A feature descriptor of each surface image in the dataset is extracted and represented by this 
feature descriptor. This descriptor has been achieved by combining the histogram of uniform 
LBP patterns with the eight textural features computed from the GLCM. Fig. 10 shows 
examples of defect-free and defective wood surfaces along with the features obtained from 
both LBP Uniforms histogram and GLCM textural features. Fig. 11 shows examples of 
defect-free and defective ceramic tiles surfaces along with the features obtained from both 
LBP Uniforms histogram and GLCM textural features. 
The proposed surface inspection system has been validated by training and testing it twice on 
ceramic tiles and wood images. Table 2 shows the number and categories of the training data 
used. 

TABLE 2 
THE NUMBER OF SURFACE IMAGES’ CATEGORIES USED IN THE TRAINING PHASE 

                           Surface 
         Defect   Ceramic Tiles Wood 

Blob or Pinhole/Knot Defects 30 40 
Crack/Check Defects 20 20 
Defect-free 50 70 
Total Surface Images 100 130 
Total Dataset Images 230 

 
The proposed surface inspection system has been tested on 184 surface images (98 of ceramic 
tiles and 86 of wood images). The decision of the proposed system has been compared with 
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the dataset categorized by a human expert in the data collection step. Table 3 shows the 
decisions of the proposed inspection system. 
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Fig. 10. Examples of feature description results of wood surfaces: a-c) original images, d-f) LBP images, g-i) LBP 

uniform histograms, j-m) GLCM textural features 
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Fig. 11. Examples of feature description results of ceramic tiles surfaces: a-c) original images, d-f) LBP images, g-i) 

LBP uniform histograms, j-m) GLCM textural features 
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TABLE 3 
THE ACCURACY OF THE PROPOSED SYSTEM ON CERAMIC TILES AND WOOD SURFACES 

 Ceramic Tiles Wood Both Surfaces 

Total Number of Tested Surfaces 98 86 184 

Number of Surfaces Identified Correctly 95 81 176 

Number of Surfaces Identified Falsely 3 5 8 

Accuracy 96.9% 94% 95.6% 

 
The comparison shows a true decision of the inspection system on 176 surface images while 8 
surface images have been identified falsely. The accuracy of the inspection system is 96.9% 
for the ceramic tile images and 94% for the wood images. This accuracy difference between 
the two surfaces is due to the complex and non-uniform patterns on wood surfaces. The 
overall accuracy of the proposed system on both surfaces was 95.6%. 
The proposed system has been compared to other state-of-the-art surface defect inspection 
systems based on three parameters: number of classes, surface types, and accuracy. The 
proposed system outperformed other systems based on accuracy as shown in Table 4. In 
addition, the proposed system has been tested on two different surfaces, whereas most 
systems in the literature are tested on one surface type. 

 
TABLE 4 

COMPARISON OF THE PROPOSED SYSTEM WITH STATE-OF-THE-ART SYSTEMS 

 
DWT-Fourier 
Spectral-SVM 

[19] 

GLCM-
FFNN [14] 

LBP-
BPNN 

[9] 

UDWT-GLCM-
BBNN [4] 

GLCM-
BPNN [13] 

Proposed 
System 

Number of 
Classes 7 2 3 2 5 3 

Surface Type Reflected Metal Textile Wood Ceramic Tiles TFT Array 
Wood and 
Ceramic 

Tiles 

Accuracy (%) 85 91 93.3 93.2 83.3 95.6 

VI. DISCUSSIONS AND CONCLUSIONS 

In this paper, we have proposed an automated system for surface inspection to label a given 
surface either as defective or defect-free. The proposed inspection system has combined both 
LBP uniform patterns histogram and GLCM textural features to construct powerful and 
discriminative feature descriptors of surfaces. Linear SVM classifier has been deployed to 
build up the classification model. The proposed system has been validated on wood and 
ceramic tile images; and it showed efficient and promising accuracy results.  
The system can be enhanced in the future by considering: 1) Classifying surfaces to multi-
classes; 2) considering more features of LBP and GLCM in the proposed system; 3) testing 
the proposed system on other surfaces and other types of ceramic tiles; and 4) adapting gray 
scale defects in addition to shape and textural defects discussed in this paper. 
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